skip to main content


Search for: All records

Creators/Authors contains: "Sun, Mingkang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photoinduced electron/energy transfer (PET)-reversible addition–fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks. In this study, two different metal catalysts, namely, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) and zinc tetraphenylporphyrin (ZnTPP), were selected to generate two different catalytic pathways, one with Ir(ppy)3 proceeding through an energy-transfer pathway and one with ZnTPP proceeding through an electron-transfer pathway. These PET-RAFT systems were contrasted against a conventional photoinitated RAFT process. Mechanically robust materials were generated. Using bulk swelling ratios and degradable cross-linkers, the homogeneity of the networks was evaluated. Especially at high primary chain length and cross-link density, the PET-RAFT systems generated more uniform networks than those made by conventional RAFT, with the electron transfer-based ZnTPP giving superior results to those of Ir(ppy)3. The ability to deactivate radicals either by RAFT exchange or reversible coupling in PET RAFT was proposed as the mechanism that gave better control in PET-RAFT systems. 
    more » « less
  2. Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment. 
    more » « less
  3. Abstract

    Atom transfer radical polymerization (ATRP) is one of the most powerful methods to prepare well‐defined (co)polymers. Cu‐catalyzed ATRP methods are most commonly used because of the excellent control and tunable catalytic activities via ligand functionalization. This minireview summarizes the development of Cu‐catalyzed ATRP in the presence of cocatalysts, which are used to regenerate CuIcomplex activators during polymerizations. Fundamentals of Cu‐based ATRP catalysts are first introduced, followed by the discussion of different types of cocatalysts in different Cu‐catalyzed ATRP methods. Recent developments of photochemical cocatalysts for oxygen‐tolerant ATRP and ATRP using long‐wavelength irradiation are highlighted, which significantly expand the applications of Cu‐catalyzed ATRP. Methods to study the properties of cocatalysts and their roles in Cu‐catalyzed ATRP are discussed, with an outlook for the future development of cocatalysts.

     
    more » « less